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Overview

• Motivation
• Linear model formulation
• Region of interest analyses
• Pixel/voxel based analyses
• Multiple comparisons for images
• Bayesian image analysis methods



Motivation
• Imaging data – statistical methods to look

for “regional effects”
• Tissue differences between groups or

over time – VBM, TBM (voxel/tensor-based
morphometry)

• PET (positron emmission tomography),
fMRI (functional MRI) – determine
“activation” in the brain due to thought,
stimulus or task

• Diffusion (DWI, DTI, tractography), Bone
mineral density etc. etc.



FMRI Data:
Set of Volumes (over time) or

Set of Time-Series (over space)

Tim
e

Serial
Snapshots of

Volunteers
brain

Active
Passive
Baseline

Time



Software etc.
SPM – PET, fMRI, VBM and TBM, EEG/MEG
 (http://www.fil.ion.ucl.uk/spm/  needs Matlab)

FSL – fMRI primarily + DTI
(http://www.fmrib.ox.ac.uk/fsl/)

R – AnalyzeFMRI package + linear models in
general (http://www.r-project.org/ and then go
to your nearest CRAN mirror)
Also, check “Venables and Ripley” Splus
book + many R books (see R web site) +
online tutorials



Challenges

• Generating suitable (statistical)
imaging models

• Dealing with highly multivariate
responses (curse of dimensionality)

• Defining imaging “hypotheses”
• Creating computationally efficient

analysis procedures



Aims of Statistical Modeling

• Summarize data
• Estimation: point and interval estimates
• Inference: hypotheses / relationships
• Prediction
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Statistical Modeling Strategy

• Propose a model for the data
• Fit the model
• Assess the model’s adequacy
• Fit other plausible models
• Compare all fitted models
• Interpret the best model



Statistical Models: Definitions
• Univariate response variable  yi  (for exp. unit i)

• Covariates  (xi1, xi2,..., xik) =
   (variables of interest and “nuisance” variables)

• Data is:                          , n experimental units

Continuous covariates: e.g. age, blood pressure
etc., (random or controlled)

Factors: e.g. diagnosis, gender, drinking level
(low, medium, high) etc.

   x i
T

   
yi ,x i

T;i = 1,...,n{ }



  yi = !1 + xi2!2 + xi3!2 + ...+ xim!m + " i

A simple linear model might take the form:

2~ (0, ),     . . .   1,...,i N i i d i n! " =
, , ,...i mean i age age i gender gender i diagnosis diagnosis iy x x x! ! ! ! "= + + + + +

e.g.

i.i.d. = independently and identically distributed

The (General) Linear Model



The (General) Linear Model

   

yi = x i
T! + " i ,      i = 1,...,n

! = (!1,...,!m )T

y = XT! + "

For univariate data:

or in matrix notation

This can be extended to a multivariate response

  Y = XTB + E

is a set of unknown parameters



Ex. Hippocampal Volume
HCV ~ Age + Diagnosis 

(Wilkinson notation)

Diagnosis can be
normal control
(NC) or
Alzheimer’s
disease (AD)



Ex. Hippocampal Volume
HCV ~ Age + Diagnosis + Age*Diagnosis

(Wilkinson notation)

Diagnosis can be
normal control
(NC) or
Alzheimer’s
disease (AD)



Structural T1 weighted MRI’s

Hippocampal volumes manually traced

Volume measure = response for each subject

Disease status encoded 1 for AD and 0 for NC
(the         term).diagx



  
yi = !1 + xi,age!age + xi,diag .!diag . + xi.agexi,diag .!inter + " i

age

HCV

Case 1
.0, 0, 0age diag inter! ! != = =



  
yi = !1 + xi,age!age + xi,diag .!diag . + xi.agexi,diag .!inter + " i

age

HCV

Case 2
.0, 0, 0age diag inter! ! !" = =



0 , , . . . , .i i age age i diag diag i age i diag inter iy x x x x! ! ! ! "= + + + +

age

HCV

Case 3
.0, 0, 0age diag inter! ! !" " =

AD
NC



0 , , . . . , .i i age age i diag diag i age i diag inter iy x x x x! ! ! ! "= + + + +

age

HCV

Case 4
.0, 0, 0age diag inter! ! !" " "

AD

NC



  
yi = !1 + xi,age!age + xi,diag .!diag . + xi.agexi,diag .!inter + " i

age

HCV

Case 4
.0, 0, 0age diag inter! ! !" " "

AD

NC



Linear models can be more general
- only needs to be linear in the parameters:

We can have:

!

  

yi = xage!1 + xage
2 !2 + exp(xheight )!3 + xage

" xheight!4 + # i

                                                      i = 1,...,n



Estimation

   

!̂ = (XT X)"1XT y

E(!̂) = !

V (!̂) = # 2 (XT X)"1

#̂ 2 =
sum of squares error

n

Minimize squared error (Least Squares Error)
         = Maximum Likelihood Estimation

for linear model

Estimate       by2! or divide by n-1
for unbiased
estimate



Inference – Model Comparison
Take linear model

And add constraint

this defines a new model that is a 
simplification of the previous one

=A c!
  y = XT! + "



Inference – Model Comparison
E.g., cf. model

to simplification with

                               i.e. 

  yi = !1 + !2xi1 + !3xi2 + " i

  

!3 = 0
yi = !1 + !2xi + " i
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What about              &             ?  !2 = 0      !3 = 0

  

A! = c    "    
0 0 1

0 1 0

#

$
%
%

&

'
(
(

 

!1

!2

!3

#

$

%
%
%%

&

'

(
(
((

= 0
0

#

$%
&

'(



And what about               ? !2 = !3
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Are 2 different conditions equivalent?
E.g. is the activation effect: reading a
word vs imagining the object equal?



Definition: Linear model nested in
another if 1st model can be obtained by
linear constraint on the 2nd

Nesting tree:
age + gender

age gender

null



F-test for General Linear
Hypothesis

    
y = XT! + "        " ! Nn 0,# 2In( )

Consider
0 :H =A c!

This is the General Linear Hypothesis



Under        , i.e., 0H

   
F =

(Devnested ! Devlarger ) / ( plarger ! pnested )
(Devlarger ) / (n ! plarger )

! Fplarger ! pnested ,n! plarger

p denotes the number of model parameters
n denotes the number of data points
Dev = Deviance = sum of squares of residuals

Tests ratio of variances

 A! = c



FMRI Data:
Set of Volumes (over time) or

Set of Time-Series (over space)

Tim
e
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realignment &
motion

correction
smoothing

normalisation

Linear Model
model fitting
statistic image

Corrected thresholds & p-values

image data

parameter
estimates

design
matrix

anatomical
reference

kernel

Statistical
Parametric Map
(test statistics)

Thresholding &
Random Field

Theory



Estimation

 A
ctive Passive B

aseline

≈ 1· + 2· +  3·

    The estimation entails finding the parameter
values such that the linear combination best fits
the data

2 3 4 0 1 0 1 0 1 2



Parameter Estimates
• Same model for all voxels
• Different parameters for each voxel

beta_0001.img

beta_0002.img

beta_0003.img...

...
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SPM View

1· +2· +3·≈ 1· +2· +3·

y ≈   XTβ

We trust: Long series with
large effects and small error

Note:
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Spatial Modeling



Spatial Hypotheses
Question - how do we extend from standard univariate
hypotheses to answering spatially motivated questions?

Not easy - curse of dimensionality (millions of voxels)

A B A

B
1D

2D

in 1D it makes sense to infer A is less than B, but what
is the equivalent in 2D?



Spatial Testing Solutions

• Summarize the image into one dimensional
quantities for testing (e.g. region of interest
analysis)

• Consider the overall test as a combination of
individual voxel tests (voxel based analysis)

• Perform shape/object analysis on objects
defined via landmarks

• Build Bayesian image analysis models



Spatial Testing Solutions

• Summarize the image into one dimensional
quantities for testing (e.g. region of interest
analysis)

• Consider the overall test as a combination of
individual voxel tests (voxel based analysis)

• Perform shape/object analysis on objects
defined via landmarks

• Build Bayesian image analysis models



Voxel based analysis

Each voxel obtains a test statistic from the
linear model, e.g. t or F

Forms statistical maps of the statistics



realignment &
motion

correction
smoothing

normalisation

Linear Model
model fitting
statistic image

Corrected thresholds & p-values

image data

parameter
estimates

design
matrix

anatomical
reference

kernel

Statistical
Parametric Map
(test statistics)

Thresholding &
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Theory



• Null Hypothesis H0

• Test statistic T
– t observed realization of T

• α-level
– Acceptable false positive risk
– Level α = Pr( T>uα |  H0 )
– Threshold uα controls false positive risk at

level α

Hypothesis Testing

uα

α

Null Distribution of T



Multiple Comparisons Problem

Which of 100,000 voxels are
significant?
– α =0.05 ⇒ 5,000 false positive voxels



Assessing Statistic Images
Where’s the signal or change?

t > 0.5t > 3.5t > 5.5

High Threshold Med. Threshold Low Threshold

Good Specificity

Poor Power
(risk of false
negatives)

Poor Specificity
(risk of false

positives)

Good Power

How can we determine a sensible threshold level?



Multiple Comparison Solutions:
Measuring False Positives

• Familywise Error Rate (FWER)
– Familywise Error

• Existence of one or more false positives
• False Discovery Rate (FDR)

– FDR = E(V/R)
– R voxels declared active, V falsely so

Realized false discovery rate: V/R



Independent Voxels Spatially Correlated Voxels

Bonferroni is too conservative for brain images

Bonferroni Correction
FWE, FWE, αα,,  for   NN  independentindependent  voxels voxels isis    αα =  = NvNv      ((v = voxel-
wise error rate)

To control FWE set    v = α / N



FWER MCP Solutions:
Random Field Theory

• Euler Characteristic χu
– Topological Measure

• #blobs - #holes
– At high thresholds,

just counts blobs
– FWER = Pr(Max voxel ≥ u | Ho)

= Pr(One or more blobs | Ho)
≈ Pr(χu ≥ 1 | Ho)
≈ E(χu | Ho)

Random Field

Suprathreshold Sets

Threshold

No holes

Never
more than
1 blob

See description at http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesRandomFields



Random Field Theory
Limitations

• Multivariate normality (Gaussianity)
– Virtually impossible to check

• Sufficient smoothness
– FWHM smoothness 3-4 × voxel size

• Smoothness estimation
– Estimate is biased when images not

sufficiently smooth
• Several layers of approximations

Lattice Image
Data

≈

Continuous Random
Field



Multiple Comparisons Solutions:
Measuring False Positives

• Familywise Error Rate (FWER)
– Familywise Error

• Existence of one or more false positives
– FWER is probability of familywise error

• False Discovery Rate (FDR)
– FDR = E(V/R)
– R voxels declared active, V falsely so

• Realized false discovery rate: V/R



False Discovery Rate
• For any threshold, all voxels can be cross-

classified:

• Realized FDR
rFDR = V0R /(V1R+V0R) = V0R /NR

– If  NR = 0, rFDR = 0
• But only can observe NR, don’t know V1R & V0R

– We control the expected rFDR
FDR = E(rFDR)

NRNA

V1RV1ANull False
V0RV0ANull True

Reject NullAccept Null



False Discovery Rate
Illustration:

Signal

Signal+Noise

Noise



FWE

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7%

Control of Familywise Error Rate at 10%

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5%

Control of Per Comparison Rate at 10%

Percentage of Null Pixels that are False Positives

Control of False Discovery Rate at 10%

Occurrence of Familywise Error

Percentage of Observed “Above Threshold” Pixels that are False Positives



Benjamini & Hochberg
Procedure

• Select desired limit q on FDR
• Order p-values, p(1) ≤ p(2) ≤  ... ≤ p(V)
• Let r be largest i such that

• Reject all hypotheses
corresponding to
 p(1), ... , p(r)

p(i) ≤  i/V × q/c(V)
p(i)

i/V
i/V × q/c(V)

p-
va
lu
e

0 1

0
1

Journal of the Royal
Statistical Society – Series B
(1995) 57:289-300

NB, no spatial consideration 



Also, Non-Parametric
Testing

• If H0 is true then time order irrelevant
(if noise really iid)

• Therefore permute the timepoints
and obtain test statistics

• If true test statistic is extreme
compared to others then reject H0



Types of Spatial Inference

• Individual voxel level
• Cluster level
• Set level
• Bayesian model based



Voxel-level Inference

• Retain voxels above α-level threshold uα

• Gives best spatial specificity
– H0 at a single voxel can be rejected

Significant
Voxels

space

uα

No significant
Voxels



Cluster-level Inference
• Two step-process

– Define clusters by arbitrary threshold uclus

– Retain clusters larger than α-level
threshold kα

Cluster not
significant

uclus

space

Cluster
significantkα kα



• Typically better sensitivity
• Worse spatial specificity

– The null hyp. of entire cluster is rejected
– Only means that one or more of voxels

in cluster active

Cluster-level Inference

Cluster not
significant

uclus

space

Cluster
significantkα kα



Set-level Inference
• Count number of blobs c

– Minimum blob size k
• Worst spatial specificity

– Only can reject global null hypothesis

uclus

space

Here c = 1; only 1 cluster larger than k

k k



Review:
Levels of inference & power



A flexible Bayesian Approach
• Model the form of activity
• Provides an “adaptive thresholding”

approach

space

Active voxels



Bayesian Model

y zx != +
 y = data, parameter estimates of statistics
 z = binary activation map – modeled as a MRF
 x = activation level field – modeled as a MRF
    = residual error

MRF = Markov Random Field (similar random
field but defined on a lattice)

!



Model Illustration

z = 0                  z = 1              z = 0

x

zx + !



Model Illustration

z = 0                  z = 1              z = 0

x

zx fit 



          y                                 x                                  z

                                            zx          +                         !

=



Other Topics and Omissions

• Hemodynamic response function
• Multiple subjects (random and mixed

effects models)
• PCA, ICA
• Multivariate analysis with variogram

modeling
• Space-time modeling


